Abstract

Bismuth magnesium titanate Bi(Mg0.5Ti0.5)O3 ceramic, fabricated by ceramic processing technique, has been characterized using various experimental techniques. Analysis of basic crystal structure using X-ray diffraction data has exhibited the orthorhombic system as a major phase. Microstructural analysis provided the quality of the sample. Detailed studies of electrical properties (dielectric constant, tangent loss, electrical modulus, conductivity and impedance) of Bi(Mg0.5Ti0.5)O3 in a wide range of frequency (1 kHz–1 MHz) and temperature (25–480 °C) have provided various interesting results on antiferroelectric characteristics, conduction mechanism, structure–properties relationship, etc. An important role of interface in getting high dielectric material has been realized. The space charge polarization and Maxwell–Wagner dielectric relaxation in the material, particularly at low frequencies and high temperatures. Nyquist plots discuss the temperature-dependent contributions of grain effect. The frequency of the applied electric field and temperature strongly affect the electrical (AC) conductivity and transport properties of the material studied, and exhibiting semiconductor characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call