Abstract

ABSTRACTThe primary objective of this research is to optimize the different deposition conditions to obtain high tunability and low dielectric loss of Barium Strontium Titanate (BST) thin films at microwave frequencies. Ba0.5Sr0.5TiO3thin films were deposited on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition technique (PLD). Deposition conditions like temperature, oxygen pressure, substrate to target distance and laser energy are varied to obtain the objective. Deposition of the BST thin films on the Pt/TiO2/SiO2/Si substrates was carried out at temperatures of 450°°C, 550°°C, 650°°C and oxygen pressures of 250mTorr and 450mTorr with laser fluence of 250 mJ/cm2 and 450mJ/cm2 at 10 pulses per second. The microstructural and phase analysis of the deposited BST films at different temperatures and different oxygen pressures were performed using X-ray diffraction (XRD) method. The diffraction patterns are attributed to cubic (perovskite) crystal system. Atomic force microscopy (AFM) was used to perform the surface analysis of the films deposited at different substrate to target distances, varied laser energies and oxygen pressures. The BST capacitor was fabricated using the Coplanar Waveguide Structure and the capacitance and dielectric constant were measured using the Vector Network Analyzer (VNA). Tunability of 3.1:1 and loss tangent of 0.0121 was achieved at 0.4 – 0.8 GHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.