Abstract

AbstractStructural and electrical properties of Al‐doped ZnO (AZO) films deposited by atomic layer deposition (ALD) are investigated to study the extrinsic doping mechanism of a transparent conducting oxide. ALD‐AZO films exhibit a unique layer‐by‐layer structure consisting of a ZnO matrix and Al2O3 dopant layers, as determined by transmission electron microscopy analysis. In these layered AZO films, a single Al2O3 dopant layer deposited during one ALD cycle could provide ≈4.5 × 1013 cm−2 free electrons to the ZnO. The effective field model for doping is suggested to explain the decrease in the carrier concentration of ALD‐AZO films when the interval between the Al2O3 layers is reduced to less than ≈2.6 nm (>3.4 at% Al). By correlating the electrical and structural properties, an extrinsic doping mechanism of ALD‐AZO films is proposed in which the incorporated Al atoms take oxygen from the ZnO matrix and form doubly charged donors, such as oxygen vacancies or zinc interstitials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call