Abstract
A new polytype of the misfit layer compound ([SnSe]1.16)1(NbSe2)1 with extensive rotational disorder was prepared from designed modulated elemental reactants. This polytype, previously referred to as a ferecrystal due to the extensive rotational disorder, formed over a range of compositions and precursor thicknesses and the resulting c-axis lattice parameters ranged from 1.2210(4) to 1.2360(4)nm. These values bracket the value published for the crystalline misfit layer compound prepared at high temperature. The a- and b-axis in-plane lattice parameters of both the SnSe and NbSe2 constituents were incommensurate, which differs from the misfit layer compound formed via high temperature reaction that has a common b-axis lattice parameter for the two constituents. The in-plane area per unit cell of the ferecrystal is 1–2% larger than the compound formed at high temperature. The ferecrystalline ([SnSe]1.16)1(NbSe2)1 compound is 1.6 times more conductive than the misfit layer compound. Hall effect measurements indicate that the ferecrystal is a p-type metal and that the higher conductivity is a consequence of higher mobility of carriers in the ferecrystalline compound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.