Abstract
We report on highly crystalline zinc nitride (Zn3N2) thin films which were grown by rf magnetron sputtering on quartz substrates. The substrate temperature during growth is found to strongly affect the crystal quality of the thin films. The chemical bonding states were determined by x-ray photoelectron spectroscopy. Large chemical shifts in core-level N 1s peaks with binding energy of 396.4 eV were observed as compared to N 1s of free amine (398.8 eV), indicating Zn–N bond formation. Two N 1s states were found: one is N1 formed by Zn–N bonds and another is (N2) produced by substitution of N molecules at N ion sites, which leads to larger lattice constants, consistent with x-ray diffraction results. Temperature-dependent Hall effect measurements of our Zn3N2 films exhibited distinct conduction mechanisms at specific different temperature ranges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.