Abstract

Pure iron and aluminum powders were mixed in the equiatomic ratio and mechanically alloyed in a high-energy ball mill for different times. Structure refinement of x-ray powder diffraction data was performed to study the structural transformations induced by mechanical and subsequent thermal annealing treatments. The mechanical alloying (MA) process induces a progressive dissolution of aluminum phase into the bcc iron phase. After 32 h of MA a single-phase Fe(Al) bcc extended solid solution, with lattice parameter a0=2.891 Å, average coherent domain size 〈D〉≊50 Å, and lattice strain 0.5%, was observed. The annealing of the specimens after MA up to 8 h favored the aluminum dissolution in α-iron and the precipitation of the Al5Fe2 phase, whereas a nanostructured B2 FeAl intermetallic compound was observed in the annealed samples which were previously milled for 8, 16, and 32 h. In the same specimens a minority cubic phase Fe3AlCX, anti-isomorphous with perovskite, derived from contamination of ethanol and introduced in the steel vial as a lubricant agent, was also observed. Anelasticity measurements have shown the occurrence of two main transient effects during the first thermal run. The first one occurring at 500 K in all mechanically alloyed specimens was attributed to thermally activated structural transformations, whereas the second at about 700 K was attributed to a magnetic order–disorder transition. During the second run of anelasticity measurements a relaxation peak P1 in the nanostructured B2 FeAl intermetallic compound, attributed to grain-boundary sliding mechanisms and with an activation energy of 1.8±0.2 eV was observed. In specimens milled for 8–32 h a second small peak P2 at the low-temperature tail of the P1 peak was observed and tentatively attributed to a Zener-type relaxation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call