Abstract
Motivated by the potential usefulness of polyethylene glycol (PEG)/Li+ salt mixtures in several industrial applications, we investigated the structure and dynamics of PEG/LiClO4 mixtures in D2 O and its mixtures with CD3 CN and DMSO-d6 , in a series of PEG-based polymers with a wide variation in their molecular weights. 1 H NMR chemical shifts, T1 /T2 relaxation rates, pulsed-field gradient NMR diffusion experiments, and 2D HOESY NMR studies have been performed to understand the structural and dynamical aspects of these mixtures. Increasing the temperature of the medium results in a significant perturbation in the H-bonded structure of PEG in its PEG/LiClO4 /D2 O mixtures as observed from the increase in chemical shifts. On the other hand, the addition of molecular cosolvents has a negligible effect. The hydrodynamic structure of PEG shows a pronounced variation at low temperature with increasing molecular weight, which, however, disappears at higher temperatures. Increasing the temperature leads to a decrease in the hydrodynamic structure of PEG, which can be explained on the basis of solvation-desolvation phenomena. The 2D HOESY NMR spectra reveal a new finding of Li+ -water binding in the PEG/LiClO4 /D2 O mixtures with the addition of molecular solvents, suggesting that the Li+ cation diffuses freely in the D2 O mixtures of polymers as compared with the polymer mixtures with DMSO or CD3 CN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.