Abstract
ABSTRACTThe solid polymeric nanocomposite electrolyte (SPNE) films based on the blend of amorphous poly(methyl methacrylate) (PMMA) and semicrystalline poly(ethylene oxide) (PEO) (PMMA:PEO = 80:20 wt %) doped with lithium perchlorate (LiClO4) salt and montmorillonite (MMT) clay nanofiller were prepared by classical solution cast, ultrasonic assisted solution cast and ultrasonication along with microwave irradiated solution cast followed by melt‐pressing methods. The X‐ray diffraction study of these electrolytes revealed the amorphous behavior with intercalated MMT structures. The suppressed crystallinity of PEO in the blend electrolyte complexes confirmed the existence of single discrete PEO chains confined within the PMMA domains. The dielectric relaxation spectroscopy of these materials was performed over the frequency range 20 Hz to 1 MHz, at ambient temperature. The presence of a singular relaxation peak in the loss tangent and electric modulus spectra of these electrolytes confirms a coupled cooperative chain segmental dynamics of the blend polymer owing to their miscible amorphous morphology. The behavior of transient complexes formed between the polymers functional groups, lithium cations and the intercalated MMT nanoplatelets was explored. The ambient temperature ionic conductivity of these electrolytes depends on the structural dynamics and the sample preparation methods. It is revealed that the presence of PEO in the PMMA matrix mainly governs the structural, dielectric, and ionic properties of these SPNE films. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2015,132, 41311.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.