Abstract

Introduction. Neutralization methods (including composting) are widely used in the technologies of chemical and biothermal oxidation of organic matter. A promising method of waste management is their biothermal composting using controlled gas flows. The methods of process intensification are described: the introduction of inoculating additives, increasing the homogeneity of the mixture, recycling of composts, natural and forced low-pressure and high-pressure aeration, and several others. One example of the implementation of these technologies is the disposal of oil-contaminated soils. Materials and methods. The description of the implemented complexes of biothermal composting of oil-contaminated soils: functional zoning, design solutions. The main functional zones are shown: input control section, intermediate placement area, continuous forced aeration zone (inoculation), periodic forced aeration zone (stacked cavalier biodegradation), and natural aeration zone without mixing (ripening zone). The main element of the complex is the combined aeration system (forced from blower devices and natural mechanical mixing). The expediency of using high-pressure forced aeration to intensify the composting process is shown. Results. The developed mode of operation of the aeration system of the composted mass is described: the initial process of incomplete oxidation of organic matter in stacks of inoculation with a constant air flow and the final decomposition of organic matter with a periodic air flow. The constructive design of the high-pressure forced aeration system used to intensify the composting process is given. Aerobic biothermal composting is performed in aerated piles, which are formed on sites with a waterproof coating. Aeration, necessary to accelerate the decomposition of organic matter in the composts, is carried out in natural (mixing with a ladle) and artificial (purging) conditions. For purging use a system of perforated pipes and blower station. Describes measures to protect pipelines (ducts) from aggressive environmental exposure and increase their service life, to ensure the efficiency of the aeration system in an emergency. Conclusions. The possibility of practical implementation of gas flow control technology in the design, construction and operation of biothermal treatment of waste is shown. The implementation of the projects described in the article showed the need to create a generalized mathematical model that would describe in general terms the behavior of gas flows in heterophase wastes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.