Abstract
The structural and chemical properties of the bi-molecular, hydrogen-bonded, nitrogen-rich energetic material triaminoguanidinium 1-methyl-5-nitriminotetrazolate C(3)H(12)N(12)O(2) (TAG-MNT) have been investigated at room pressure and under high pressure isothermal compression using powder x-ray diffraction and Raman and infrared spectroscopy. A stiffening of the equation of state and concomitant structural relaxation between 6 and 14 GPa are found to correlate with Raman mode disappearances, frequency discontinuities, and changes in the pressure dependence of modes. These observations manifest the occurrence of a reversible martensitic structural transformation to a new crystalline phase. The onset and vanishing of Fermi resonance in the nitrimine group correlate with the stiffening of the equation of state and phase transition, suggesting a possible connection between these phenomena. Beyond 15 GPa, pressure induces irreversible chemical reactions, culminating in the formation of a polymeric phase by 60 GPa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Journal of Chemical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.