Abstract

Brillouin light scattering (BLS) is used to provide a comprehensive study of thin tungsten carbide films deposited on single crystal silicon substrates whose distinctive nature depends critically on the deposition parameters. The use of stepped films in these slow-on-fast systems provides enhanced data sets and allows the velocity dispersion of the observed surface excitations, including the discrete Rayleigh and Sezawa modes to be studied in detail. Comprehensive and powerful methods of data analysis and interpretation including the recently developed Monte Carlo (MC) method, the surface Green’s function, and classical approaches are applied to extract the effective elastic constants and density of each of the films. The MC and Green’s function methods are used to remove ambiguities in Sezawa mode assignments and to identify a mode-crossing event. Auger electron spectroscopy and x-ray diffraction investigations confirm conclusions about chemical composition and microstructure obtained by BLS including a structural phase transition, thus leading to a consistent description of elastic, structural, and chemical properties of tungsten carbide films as a function of their deposition conditions. The anisotropic elastic tensors of the various films are employed for an analysis of the angular dependent Young’s modulus and the shear modulus, suggesting implications for the film performance in wear protection. Finally, an estimate of the elastic anisotropy of the α-W2C single crystal is provided on the basis of the effective elastic constants of a nanocrystalline W2C film.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.