Abstract

The optimization of the float zone process for industrial application is a promising way to crystallize high purity silicon for high efficiency solar cells with reduced process costs. We investigated two differently produced Siemens rods which should be used as feed material for the float zone process. The aim is to identify and to improve material properties of the feed rods which have a high impact to the float zone process. We show here microstructural and chemical analysis comparing feed rods manufactured under standard conditions and under float zone adapted conditions. To resolve the growth behavior of the grains SEM/EBSD mappings are performed at different positions. TEM analyses are used to investigate the interface region between the mono- and the multicrystalline silicon within the Siemens feed rod. Additionally, drilled cores are cut out from the feed rods containing the region of the slim rod. Afterwards, the drilled cores are crystallized with the float zone process. Finally, carbon and oxygen measurements with FT-IR spectrometry on different positions of the crystallized drilled cores of the Siemens feed rods show the influence of the slim rod material to the float zone process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call