Abstract
The syndecan proteoglycans are an ancient class of receptor, bearing heparan sulfate chains that interact with numerous potential ligands including growth factors, morphogens, and extracellular matrix molecules. The single syndecan of invertebrates appears not to have cell adhesion roles, but these have been described for mammalian paralogues, especially syndecan-4. This member is best understood in terms of interactions, signaling, and structure of its cytoplasmic domain. The zebrafish homologue of syndecan-4 has been genetically linked to cell adhesion and migration in zebrafish embryos, but no molecular and cellular studies have been reported. Here it is demonstrated that key functional attributes of syndecan-4 are common to both zebrafish and mammalian homologues. These include glycosaminoglycan substitution, a NXIP motif in the extracellular domain that promotes integrin-mediated cell adhesion, and a transmembrane GXXXG motif that promotes dimer formation. In addition, despite some amino acid substitutions in the cytoplasmic domain, its ability to form twisted clamp dimers is preserved, as revealed by nuclear magnetic resonance spectroscopy. This technique also showed that phosphatidylinositol 4,5-bisphosphate can interact with the zebrafish syndecan-4 cytoplasmic domain, and that the molecule in its entirety supports focal adhesion formation, and complements the murine null cells to restore a normal actin cytoskeleton identically to the rat homologue. Therefore, the cell adhesion properties of syndecan-4 are consistent across the vertebrate spectrum and reflect an early acquisition of specialization after syndecan gene duplication events at the invertebrate/early chordate boundary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.