Abstract

Siderophores are iron-chelating molecules produced by microorganisms and plants to acquire exogenous iron. Siderophore biosynthetic enzymology often produces elaborate and unique molecules through unusual reactions to enable specific recognition by the producing organisms. Herein, we report the structure of two siderophore analogs from Agrobacterium fabrum strain C58, which we named fabrubactin (FBN) A and FBN B. Additionally, we characterized the substrate specificities of the NRPS and PKS components. The structures suggest unique Favorskii-like rearrangements of the molecular backbone that we propose are catalyzed by the flavin-dependent monooxygenase, FbnE. FBN A and B contain a 1,1-dimethyl-3-amino-1,2,3,4-tetrahydro-7,8-dihydroxy-quinolin (Dmaq) moiety previously seen only in the anachelin cyanobacterial siderophores. We provide evidence that Dmaq is derived from l-DOPA and propose a mechanism for the formation of the mature Dmaq moiety. Our bioinformatic analyses suggest that FBN A and B and the anachelins belong to a large and diverse siderophore family widespread throughout the Rhizobium/Agrobacterium group, α-proteobacteria, and cyanobacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.