Abstract

Structural approaches have provided insight into the mechanisms of circadian clock oscillators. This review focuses upon the myriad structural methods that have been applied to the molecular architecture of cyanobacterial circadian proteins, their interactions with each other, and the mechanism of the KaiABC posttranslational oscillator. X-ray crystallography and solution NMR were deployed to gain an understanding of the three-dimensional structures of the three proteins KaiA, KaiB, and KaiC that make up the inner timer in cyanobacteria. A hybrid structural biology approach including crystallography, electron microscopy, and solution scattering has shed light on the shapes of binary and ternary Kai protein complexes. Structural studies of the cyanobacterial oscillator demonstrate both the strengths and the limitations of the divide-and-conquer strategy. Thus, investigations of complexes involving domains and/or peptides have afforded valuable information into Kai protein interactions. However, high-resolution structural data are still needed at the level of complexes between the 360-kDa KaiC hexamer that forms the heart of the clock and its KaiA and KaiB partners.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.