Abstract

Plant derived small molecules, which interact with and stabilize G-quadruplex DNA, act as inhibitors of telomere elongation and oncogene expression in humans. The inhibition of telomerase enzyme has immense potential since it is over expressed in most cancer cells. Interaction of palmatine, an antitumor alkaloid, to parallel G-quadruplex DNA, [d(TTGGGGT)]4 and [d(TTAGGGT)]4, has been investigated using Nuclear Magnetic Resonance (NMR), fluorescence and Circular Dichroism (CD) spectroscopy. Titrations were monitored by 1H and 31P NMR spectra and solution structure of palmatine-[d(TTGGGGT)]4 complex was obtained by restrained Molecular Dynamics (rMD) simulations using distance restraints from 2D NOESY spectra. Thermal stabilization of DNA was determined by CD, 1H NMR and Differential Scanning Calorimetry (DSC). Binding of palmatine induces 98% enhancement of fluorescence accompanied by blue shift ∼8 nm. CD spectral bands of DNA show minor changes. Diffusion NMR studies confirm formation of a stable complex. Proton NMR signals of palmatine shift upfield upon binding and NOE cross peaks of H10, H3, H28, 5OCH3 protons with T2, A3/G3, G6 and T7 residues reveal dual recognition sites in both G-quadruplex DNA sequences, resulting in thermal stabilization of G-quadruplex by ∼13–17 °C. Restrained molecular dynamics simulations using NOE distance restraints for 2:1 palmatine-[d(TTGGGGT)]4 complex reveal end-stacking of palmatine at G6pT7 step and groove binding along T2pG3 step. Binding to [d(TTAGGGT)]4 takes place at T2pA3pG4 and G6pT7 steps. Structural features of molecular recognition of two different G-quadruplex DNA sequences by palmatine have relevance in rational drug development for anti-cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call