Abstract

The enzyme 2-methylerythritol 2,4-cyclodiphosphate synthase, IspF, is essential for the biosynthesis of isoprenoids in most bacteria, some eukaryotic parasites, and the plastids of plant cells. The development of inhibitors that target IspF may lead to novel classes of anti-infective agents or herbicides. Enantiomers of tryptophan hydroxamate were synthesized and evaluated for binding to Burkholderia pseudomallei (Bp) IspF. The L-isomer possessed the highest potency, binding BpIspF with a KD of 36 µM and inhibited BpIspF activity 55% at 120 µM. The high-resolution crystal structure of the L-tryptophan hydroxamate (3)/BpIspF complex revealed a non-traditional mode of hydroxamate binding where the ligand interacts with the active site zinc ion through the primary amine. In addition, two hydrogen bonds are formed with active site groups, and the indole group is buried within the hydrophobic pocket composed of side chains from the 60 s/70 s loop. Along with the co-crystal structure, STD NMR studies suggest the methylene group and indole ring are potential positions for optimization to enhance binding potency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call