Abstract

Due to the increasing antibiotic resistance of Pseudomonas aeruginosa (PA), an effective vaccine is urgently needed. However, no PA vaccine has been approved to date, and new protective antigens are needed to improve their efficacy. In this study, Luminex beads were used to identify new candidate antigens, after which their crystal structure was determined, and their potential contribution to bacterial pathogenesis was assessed in vitro and in vivo. Notably, a significant antibody response against the outer membrane protein LptF (lipotoxin F) was detected in sera from 409 volunteers. Moreover, vaccination with recombinant LptF conferred effective protection in an acute PA pneumonia model. The crystal structure showed that LptF comprises a 3-stranded β-sheet (β1-β3) and three α-helices (α1-α3) that are organized in an α/β/α/β/α/β pattern, which is structurally homologous to OmpA and related outer membrane proteins. In addition, LptF binds to peptidoglycan in an atypical manner, contributing to the pathogenesis and survival of PA under stress. Our data indicate that LptF is an important virulence factor and thus a promising candidate antigen for PA vaccines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.