Abstract

Chiral amines are important precursors for the pharmaceutical and fine-chemical industries. Because of this, the demand for enantiopure amines is currently increasing. Amine transaminases can produce a large spectrum of chiral amines in the (R)- or (S)-configuration, depending on their substrate scope and stereo-preference, by converting a prochiral ketone into the chiral amine while using alanine as the amine donor producing pyruvate as an α-keto acid product. In order to guide the protein engineering of transaminases to improve substrate specificity and enantioselectivity, we carried out a crystal structure analysis at 1.6 Å resolution of the (R)-amine transaminase from Aspergillus fumigatus with the bound inhibitor gabaculine. This revealed that Arg126 has an important role in the dual substrate recognition of this enzyme because mutating this residue to alanine reduced substantially the ability of the enzyme to use pyruvate as an amino acceptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.