Abstract

Little is known about the stretching effects on the biochemical and morphological features of tendons submitted to a long period of immobilization. Our purpose was to evaluate the response of rat tendons to stretching procedures after immobilization. The animals were separated into five experimental groups: GI—control of immobilized and euthanized animals; GII—immobilized and euthanized animals; GIII—control of immobilized animals and afterward stretched or allowed free cage activity; GIV—immobilized and stretched animals; and GV—immobilized and allowed free cage activity. Analysis in SDS-PAGE showed no remarkable differences among the groups, but a prominent collagen band was observed in GV, as compared to GIV and the control group, both in the compression and tension regions. Hydroxyproline content was highest in the compression region of GII. No differences among the groups were observed in the tension region. In regard to the concentration of noncollagenous proteins, differences were detected only in the tension region, where larger concentrations were found in the GII. When GII and GIV were compared, highest values were found in the GII. A more abundant presence of sulfated glycosaminoglycans, especially chondroitin sulfate, was detected in GIV, at the compression region of tendons. The presence of dermatan sulfate was outstanding in the compression and tension regions of the GII and GV groups. In the Ponceau SS stained sections, analyzed under polarization microscopy, GII exhibited the highest disorganization of the collagen bundles, partially recovered after stretching or with only remobilization. Our results indicate that a revision in the stretching procedures, in terms of duration and periodicity of the sessions, could benefit the efficiency of the stretching in cases of previous immobilization of tendons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.