Abstract

We expressed the human immunodeficiency virus type 1 transactivator protein, Tat, in the wheat germ cell-free translation system and found it to exist as a monomer. The first coding exon (residues 1 to 72) of wheat germ-expressed Tat was resistant to trypsin digestion, indicating that it is a highly folded, independently structured protein domain. Several mutant Tat proteins were dramatically more sensitive to trypsin than the wild type was, suggesting that their reduced transactivation activities are the result of destabilized structures. Mutant proteins with single-amino-acid substitutions were also identified that had reduced transactivation activities but wild-type structures in the trypsin assay. These mutants clustered in two regions of Tat, at acidic residues 2 and 5 in the amino terminus and between residues 18 and 32. These mutants, wild type in structure but reduced in activity, identify residues in the wild-type protein that may directly contact other molecules during Tat function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.