Abstract

Here we describe the three-dimensional structure of the newly discovered CP43'-photosystem I (PSI) supercomplex of cyanobacteria calculated by single-particle analysis of images obtained by electron cryomicroscopy (cryo-EM). This large membrane protein complex has a molecular mass of approximately 2 MDa and is found in cyanobacteria when grown in iron deficient media. It is composed of a reaction center trimer surrounded by 18 subunits of the chlorophyll a binding CP43'protein, encoded by the isiA gene, which increases the light harvesting capacity of PSI by approximately 70%. By modeling higher-resolution structural data obtained from X-ray crystallography into the three-dimensional (3D) cryo-EM map, we have been able to gain a better understanding of the structure and functional properties of this supermolecular complex. We have identified three separate clusters of chlorophyll molecules at the periphery of the PSI core which may aid energy transfer from the CP43' antenna ring to the reaction center. Moreover, it is shown that despite the replacement of ferredoxin with flavodoxin as an electron acceptor under iron stress conditions, the 3D map has density to accommodate the extrinsic proteins, PsaC, PsaD, and PsaE. The presence of these three proteins was also confirmed by immunoblotting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call