Abstract
Intracellular trafficking depends on the docking and fusion of transport vesicles with cellular membranes. Central to docking and fusion is the pairing of SNARE proteins (soluble NSF attachment protein receptors) associated with the vesicle and target membranes (v- and t-SNAREs, respectively). Here, the X-ray structure of an N-terminal conserved domain of the neuronal t-SNARE syntaxin-1A was determined to a resolution of 1.9 A using multiwavelength anomalous diffraction. This X-ray structure, which is in general agreement with an NMR structure of a similar fragment, provides new insight into the interaction surface between the N-terminal domain and the remainder of the protein. In vitro characterization of the intact cytoplasmic domain of syntaxin revealed that it forms dimers, and probably tetramers, at low micromolar concentrations, with concomitant structural changes that can be detected by limited proteolysis. These observations suggest that the promiscuity characteristic of pairing between v-SNAREs and t-SNAREs extends to the formation of homo-oligomeric t-SNARE complexes as well. They also suggest a potential role for the neuronal Sec1 protein (nSec1) in preventing the formation of syntaxin multimers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.