Abstract

Full-length precursor ribosomal RNA molecules (6440 bases) were produced in vitro using a plasmid containing the yeast 35 S pre-rRNA operon under the control of phage T7 promoter. The higher-order structure of the internal transcribed spacer 2 (ITS-2) region (between the 5.8 S and 25 S rRNA sequence) in the pre-rRNA molecule was investigated using a combination of enzymatic and chemical structural probes. The data were used to evaluate several structural models predicted by a minimum free-energy calculation. The results supported a model in which the 3′ end of the 5.8 S rRNA and the 5′ end of the 25 S rRNA are hydrogen-bonded better than the one in which the ends are not. The model contains a high degree of secondary structure with several stable hairpins. Similar structural models for the ITS-2 regions of Schizosaccharomyces pombe, Saccharomyces carlsbergensis, mung bean and Xenopus laevis were derived. Certain common folding features appear to be conserved, in spite of extensive sequence divergence. The yeast model should be useful as a prototype in future investigations of the structure, function and processing of pre-rRNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.