Abstract

The atomic structure of the Cu(100)–p(32×2)R45°–Sn surface has been studied using medium energy ion scattering (MEIS), co-axial impact collision ion scattering spectroscopy (CAICISS), low energy electron diffraction (LEED) and Auger electron spectroscopy (AES). The p(32×2)R45° reconstruction was observed with LEED following the deposition of 0.42ML of Sn from a Knudsen cell on to the clean Cu(100) surface. The existence of sub-surface Sn atoms was immediately ruled out by the lack of blocking dips in the MEIS Sn scattered yield. Previously reported Sn overlayer and Cu–Sn surface layer alloy models were tested against the medium and low energy ion scattering data, with the best fit realised following structural optimization of the surface alloy model proposed by Pussi [K. Pussi et al., Surf. Sci. 549 (2004) 24]. Different out-of-plane shifts were observed for Sn atoms depending on their proximity to the missing Cu row.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.