Abstract

ABSTRACTManned submersibles are important platforms for exploration and research under the oceans. One of the most important components of the manned submersible is the viewport, which develops high stresses due to the nature of its design. The basic dimensions of the viewport window and its flange are determined using ASME PVHO-1. Analysis of the viewport for given basic dimensions, shows that the corners of the low-pressure face of the viewport window and the notch regions of the flange are subjected to high stresses. Using the fillet radius method at the notch region results in stress reduction by 64%. The biological growth method helps in getting the naturally optimised shape at the corner. The use of the biological growth method for structural shape modification reduces the stress acting on the acrylic viewport by 71%. The same method applied to the flange notch region reduces its sharpness and the stress there by a considerable amount. This also helps in increasing the number of cycles of operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.