Abstract
Polyurethane is one of the most widely used copolymers and is formed by the cross-linking of isocyanates and polyols. Its physical properties have a strong dependence on the monomer structures, making it very important to characterize the monomers in polyurethane. In this study, we developed a method to analyze unknown polyurethane samples using pyrolysis gas chromatography time-of-flight mass spectrometry (Py-GC-TOFMS) with dopant-assisted atmospheric pressure chemical ionization (dAPCI). A set of standard polyurethane foams produced with several different monomers are analyzed by Py-GC-TOFMS. GC-dAPCI-TOFMS is a high-resolution, soft ionization method for GC-MS analysis that provides accurate mass information of GC separated molecules. The data obtained by this approach could effectively classify different monomers using principal component analysis (PCA), grouping polymers with the same monomers, and providing structural features significant to each monomer. Furthermore, characteristic compounds are identified using in-source collision-induced dissociation (CID) and CSI:FingerID analysis. In contrast, the same set of samples analyzed by Py-GC-electron ionization (EI)-MS could only partially separate some of the monomers. Graphical Abstract .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.