Abstract

The structures of three nine-residue peptide substrates that show differential kinetics of O-linked glycosylation catalyzed by distinct recombinant uridine diphosphate-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferases (GalNAc transferases) were investigated by NMR spectroscopy. A combined use of NMR data, molecular modeling techniques, and kinetic data may explain some structural features required for O-glycosylation of these substrates by two GalNAc transferases, GalNAc-T1 and GalNAc-T3. In the proposed model, the formation of an extended backbone structure at the threonine residue to be glycosylated is likely to enhance the O-glycosylation process. The segment of extended structure includes the reactive residue in a beta-like or an inverse gamma-turn conformation and flanking residues in a beta-strand conformation. The hydroxyl group of the threonine to be glycosylated is exposed to solvent, and both the amide proton and carbonyl oxygen of the peptide backbone are exposed to solvent. The exchange rate of the amide proton for the reactive threonine correlated well with substrate efficiency, leading us to hypothesize that this proton may serve as a donor for hydrogen bonding with the active site of the enzyme. The oxygens of the residue to be glycosylated and several flanking residues may also be involved in a set of hydrogen bonds with the GalNAc-T1 and -T3 transferases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.