Abstract

This study presents a novel in situ high-temperature fiber optic Raman probe that enables the study of the physical properties and structure of molten samples at temperatures up to 1400 °C. To demonstrate the functionality of the high-temperature fiber optic Raman probe, different composition mold fluxes were evaluated in this report. The Raman spectra at flux molten temperature were successfully collected and analyzed. A deconvolution algorithm was employed to identify peaks in the spectra associated with the molecular structure of the components in each sample. The experimental results demonstrate that the composition-dependent Raman signal shift can be detected at high temperatures, indicating that molten materials analysis using a high-temperature Raman system shows significant promise. This flexible and reliable high-temperature Raman measurement method has great potential for various applications, such as materials development, composition and structure monitoring during high-temperature processing, chemical identification, and process monitoring in industrial production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.