Abstract

Apolipoprotein E (apoE) is a key regulator of cholesterol homeostasis. Human apoE has three common isoforms, each with different risk implications for cardiovascular and neurodegenerative disease. Neither the structure of lipoprotein E particles nor the structural consequences of the isoform differences are known. In this investigation, synthetic lipoprotein particles were prepared by complexing phospholipids with full-length apoE isoforms, or with truncated N-terminal and C-terminal domains of apoE. These particles were examined with calorimetry, electron microscopy, circular dichroism spectroscopy, and internal reflection infrared spectroscopy. Results indicate that particles made with the three full-length apoE isoforms are discoidal in shape, and structurally indistinguishable. Thus, differences in their pathological consequences are not due to gross differences in particle structure. Although apoE is predominantly helical, and the axes of the helices are parallel to the flat surfaces of the particles, the orientational order of lipid acyl chains is low and inconsistent with the belt model of lipoprotein A-I structure. Instead, the data suggest that there are at least two different types of apoE-lipid interactions within lipoprotein E particles. One type occurs between apoE helices and the edge of the lipid bilayer as in the belt model, while a second type involves apoE helices that situate in the plane of the membrane and disturb acyl chain order. These interactions allow LpE particles to form with different protein/lipid ratios, and they account for the structure of LpE particles made with only the truncated domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.