Abstract
The steroidogenic acute regulatory protein (StAR)-related lipid transfer domain-4 (STARD4) is a sterol-binding protein that is involved in cholesterol homeostasis by intracellular sterol transport. In this work, we determined the crystal structures of human STARD4 and its Ω1-loop mutant in apo forms at 1.95 and 1.7 Å resolutions, respectively. The structure of human STARD4 displays a conserved α-helix/β-grip fold containing a deep hydrophobic pocket. The Ω1-loop which serves as a lid for the hydrophobic pocket has a closed conformation. The shape of the sterol-binding cavity in the closed form is not complementary to accommodate cholesterol, suggesting that a conformational change of the Ω1-loop is essential for sterol binding. The human STARD4 displayed sterol transfer activity between liposomes, and the mutations in the Ω1-loop and the hydrophobic wall abolished the transfer activity. This study confirms the structural conservation of the STARD4 subfamily proteins and the flexibility of the Ω1-loop and helix α4 required for sterol transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.