Abstract

Escherichia coli ThiF is an enzyme in the biosynthetic cascade for generating the essential cofactor thiamin pyrophosphate. In this cascade, ThiF catalyzes adenylation of the C terminus of ThiS. We report here the crystal structures of ThiF, alone and in complex with ATP. The structures provide insight into a preference for ATP during adenylation of the protein ThiS. Additionally, the structures reveal an ordered crossover loop predicted to clamp the flexible tail of ThiS into the ThiF active site during the adenylation reaction. The importance of the crossover loop for ThiF activity is highlighted by mutational analysis. Comparison of ThiF with the structural homologues MoeB, APPBP1-UBA3, and SAE1-SAE2 reveals that the ATP-binding site, including an arginine-finger, is maintained throughout evolution, and shows divergence occurring in protein substrate-binding sites and regions devoted to unique steps in the specific function of each enzyme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.