Abstract

We present a rigorous analysis of unique, wide electrochemical window solutions for rechargeable magnesium batteries, based on aromatic ligands containing organometallic complexes. These solutions are comprised of the transmetalation reaction products of Ph(x)MgCl(2-x) and Ph(y)AlCl(3-y) in different proportions, in THF. In principle, these reactions involve the exchange of ligands between the magnesium and the aluminum based compounds, forming ionic species and neutral molecules, such as Mg(2)Cl(3)(+)·6THF, MgCl(2)·4THF, and Ph(y)AlCl(4-y)(-) (y = 0-4). The identification of the equilibrium species in the solutions is carried out by a combination of Raman spectroscopy, multinuclear NMR, and single-crystal XRD analyses. The association of the spectroscopic results with explicit identifiable species is supported by spectral analyses of specially synthesized reference compounds and DFT quantum-mechanical calculations. The correlation between the identified solution equilibrium species and the electrochemical anodic stability window is investigated. This study advances both development of new nonaqueous solution chemistry and possible development of high-energy density rechargeable Mg batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.