Abstract

Dislocations in highly nitrogen-doped (N > 1×1019 cm-3) low-resistivity ( < 10 mcm) 4H-SiC substrates were investigated by photoluminescence imaging, synchrotron X-ray topography, and defect selective etching using molten KOH. The behavior of dislocations is discussed particularly in terms of their glide motion in the presence of a high concentration of nitrogen. The results indicate that nitrogen impurities up to mid 1019 cm-3 concentration do not show any discernible influence on the glide behavior of basal plane dislocations (BPDs) in 4H-SiC crystals grown by physical vapor transport (PVT) method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.