Abstract
Abstract Code-based cryptography is currently the second most promising post-quantum mathematical tool for quantum-resistant algorithms. Since in 2022 the first post-quantum standard Key Encapsulation Mechanism, Kyber (a latticed-based algorithm), was selected to be established as standard, and after that the National Institute of Standards and Technology post-quantum standardization call focused in code-based cryptosystems. Three of the four candidates that remain in the fourth round are code-based algorithms. In fact, the only non-code-based algorithm (SIKE) is now considered vulnerable. Due to this landscape, it is crucial to update previous results about these algorithms and their functioning. The Fujisaki-Okamoto transformation is a key part of the study of post-quantum algorithms and in this work we focus our analysis on Classic McEliece, BIKE and HQC proposals, and how they apply this transformation to obtain IND-CCA semantic security. Since after security the most important parameter in the evaluation of the algorithms is performance, we have compared the performance of the code-based algorithms of the NIST call considering the same architecture for all of them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.