Abstract

BackgroundProtein-protein interactions are at the basis of many cellular processes, and they are also involved in the interaction between pathogens and their host(s). Many intracellular pathogenic bacteria translocate proteins called effectors into the cytoplasm of the infected host cell, and these effectors can interact with one or several host protein(s). An effector named RicA was recently reported in Brucella abortus to specifically interact with human Rab2 and to affect intracellular trafficking of this pathogen.ResultsIn order to identify regions of the RicA protein involved in the interaction with Rab2, RicA was subjected to extensive random mutagenesis using error prone polymerase chain reaction. The resulting allele library was selected by the yeast two-hybrid assay for Rab2-interacting clones that were isolated and sequenced, following the “absence of interference” approach. A tridimensional model of RicA structure was used to position the substitutions that did not affect RicA-Rab2 interaction, giving a “negative image” of the putative interaction region. Since RicA is a bacterial conserved protein, RicA homologs were also tested against Rab2 in a yeast two-hybrid assay, and the C. crescentus homolog of RicA was found to interact with human Rab2. Analysis of the RicA structural model suggested that regions involved in the folding of the “beta helix” or an exposed loop with the IGFP sequence could also be involved in the interaction with Rab2. Extensive mutagenesis of the IGFP loop suggested that loss of interaction with Rab2 was correlated with insolubility of the mutated RicA, showing that “absence of interference” approach also generates surfaces that could be necessary for folding.ConclusionExtensive analysis of substitutions in RicA unveiled two structural elements on the surface of RicA, the most exposed β-sheet and the IGFP loop, which could be involved in the interaction with Rab2 and protein folding. Our analysis of mutants in the IGFP loop suggests that, at least for some mono-domain proteins such as RicA, protein interaction analysis using allele libraries could be complicated by the dual effect of many substitutions affecting both folding and protein-protein interaction.

Highlights

  • Protein-protein interactions are at the basis of many cellular processes, and they are involved in the interaction between pathogens and their host(s)

  • Small GTPases of the Ras super family are signaling proteins that cycle between a GDP-bound inactive state and a GTP-bound active state. These two states are regulated by guanine-nucleotide exchange factors, which facilitate the conversion of GDP to GTP; GTPase activating proteins, which facilitate the hydrolysis of the GTP and Guanine-nucleotide-dissociation inhibitors, which negatively regulate the exchange activity of the GTPase and dislocate them from membranes

  • RicA is an effector recently identified in B. abortus, which interacts with human Rab2 [6]

Read more

Summary

Introduction

Protein-protein interactions are at the basis of many cellular processes, and they are involved in the interaction between pathogens and their host(s). An effector named RicA was recently reported in Brucella abortus to interact with human Rab and to affect intracellular trafficking of this pathogen. Like other intracellular bacteria such as Legionella spp [2,3,4] and Salmonella spp [5], B. abortus probably depends on precisely orchestrated interactions with host cell proteins for its infectious process. These intracellular pathogens secrete proteins regulating host small GTPases [4,5,6,7]. A B. abortus ΔricA strain recruits less Rab on the Brucella containing vacuole, suggesting that RicA is playing a role during the intracellular trafficking of the bacterium [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.