Abstract

Most motile bacteria are capable of directing their movement in response to chemical gradients, a behavior known as chemotaxis. The signal transduction system that mediates chemotaxis in enteric bacteria consists of a set of six cytoplasmic proteins that couple stimuli sensed by a family of transmembrane receptors to behavioral responses generated by the flagellar motors. Signal transduction occurs via a phosphotransfer pathway involving a histidine protein kinase, CheA, and a response regulator protein, CheY, that in its phosphorylated state, modulates the direction of flagellar rotation. Two auxiliary proteins, CheW and CheZ, and two receptor modification enzymes, methylesterase CheB and methyltransferase CheR, influence the flux of phosphoryl groups within this central pathway. This paper focuses on structural characteristics of the four signaling proteins (CheA, CheY, CheB, and CheR) for which NMR or x-ray crystal structures have been determined. The proteins are examined with respect to their signaling activities that involve reversible protein modifications and transient assembly of macromolecular complexes. A variety of data suggest conformational flexibility of these proteins, a feature consistent with their multiple roles in a dynamic signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call