Abstract
Phospholipases can disrupt host membranes and are important virulence factors in many pathogens. VvPlpA is a phospholipase A2 secreted by Vibrio vulnificus and essential for virulence. Its homologs, termed thermolabile hemolysins (TLHs), are widely distributed in Vibrio bacteria, but no structural information for this virulence factor class is available. Herein, we report the crystal structure of VvPlpA to 1.4-Å resolution, revealing that VvPlpA contains an N-terminal domain of unknown function and a C-terminal phospholipase domain and that these two domains are packed closely together. The phospholipase domain adopts a typical SGNH hydrolase fold, containing the four conserved catalytic residues Ser, Gly, Asn, and His. Interestingly, the structure also disclosed that the phospholipase domain accommodates a chloride ion near the catalytic His residue. The chloride is five-coordinated in a distorted bipyramid geometry, accepting hydrogen bonds from a water molecule and the amino groups of surrounding residues. This chloride substitutes for the most common Asp/Glu residue and forms an unusual Ser-His-chloride catalytic triad in VvPlpA. The chloride may orient the catalytic His and stabilize the charge on its imidazole ring during catalysis. Indeed, VvPlpA activity depended on chloride concentration, confirming the important role of chloride in catalysis. The VvPlpA structure also revealed a large hydrophobic substrate-binding pocket that is capable of accommodating a long-chain acyl group. Our results provide the first structure of the TLH family and uncover an unusual Ser-His-chloride catalytic triad, expanding our knowledge on the biological role of chloride.
Highlights
Phospholipases can disrupt host membranes and are important virulence factors in many pathogens
We report the crystal structure of VvPlpA to 1.4-Å resolution, revealing that VvPlpA contains an N-terminal domain of unknown function and a C-terminal phospholipase domain and that these two domains are packed closely together
Our results provide the first structure of the thermolabile hemolysins (TLHs) family and uncover an unusual Ser–His–chloride catalytic triad, expanding our knowledge on the biological role of chloride
Summary
Phospholipases can disrupt host membranes and are important virulence factors in many pathogens. The chloride is five-coordinated in a distorted bipyramid geometry, accepting hydrogen bonds from a water molecule and the amino groups of surrounding residues. This chloride substitutes for the most common Asp/Glu residue and forms an unusual Ser–His–chloride catalytic triad in VvPlpA. Tel.: 86-532-82898916; lipases [1], such as ExoU of Pseudomonas aeruginosa [2] and SlaA of group A Streptococcus [3] During infection, these phospholipases can directly lyse host cells by disrupting the phospholipid membrane, and the products from cell lysis, such as lysophosphatidylcholine, can act as signaling molecules to further induce apoptosis and inflammation [4]. Phospholipases are important virulence factors of these pathogens and can be promising targets for antivirulence therapy
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.