Abstract

Lipopolysaccharides (LPS) are components of the Gram-negative bacterial cell surface that stimulate the host innate immune system through the Toll-like receptor (TLR) 4–MD-2 complex. Rhodobacter sp. have been reported to produce LPS that lack endotoxic activity, and instead act as antagonists of other endotoxins. In this report, we focused on LPS, especially the lipooligosaccharide (LOS) fraction produced by Rhodobacter azotoformans that shows production of IL-8, but has an inverse correlation with IL-6 production. We analyzed their molecular structure by using mass spectrometry and nuclear magnetic resonance spectroscopy and report a novel LOS consisting of a shorter glycan structure containing glucuronic acid but not heptoses. A novel glycan structure, Glcα(1 → 4)GlcAα(1 → 4)KDOα(2 → 4)[Glcα(1 → 5)]KDOα(2 → 6)[4-phosphate]GlcNβ(1 → 6) GlcNα1-phosphate, was proposed using NMR methods. The structure was consistent with one obtained based on MS. The MS analysis further revealed the existence of structural variation caused by extension with hexoses. The acyl composition in lipid A was suggested to contain three C14 fatty acyl chains (3-OH-14:0 or 3-oxo-14:0 at N2 of GlcN-1, 3-OH-14:0 at N2 of GlcN-2, that carried another 14:1 Δ7 on its β-hydroxyl group) and two C10 fatty acyl chains (3-OH-10:0 at O3 of both GlcN), which are same as those found in lipid A from Rhodobacter sphaeroides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call