Abstract

The ribosome is not only a highly complex molecular machine that translates the genetic information into proteins, but also an exceptional specimen for testing and optimizing cross-linking/mass spectrometry (XL-MS) workflows. Due to its high abundance, ribosomal proteins are frequently identified in proteome-wide XL-MS studies of cells or cell extracts. Here, we performed in-depth cross-linking of the E. coli ribosome using the amine-reactive cross-linker disuccinimidyl diacetic urea (DSAU). We analyzed 143 E. coli ribosomal structures, mapping a total of 10,771 intramolecular distances for 126 cross-link-pairs and 3,405 intermolecular distances for 97 protein pairs. Remarkably, 44% of intermolecular cross-links covered regions that have not been resolved in any high-resolution E. coli ribosome structure and point to a plasticity of cross-linked regions. We systematically characterized all cross-links and discovered flexible regions, conformational changes, and stoichiometric variations in bound ribosomal proteins, and ultimately remodeled 2,057 residues (15,794 atoms) in total. Our working model explains more than 95% of all cross-links, resulting in an optimized E. coli ribosome structure based on the cross-linking data obtained. Our study might serve as benchmark for conducting biochemical experiments on newly modeled protein regions, guided by XL-MS. Data are available via ProteomeXchange with identifier PXD018935.

Highlights

  • Ribosomes, the molecular machines that are responsible for protein synthesis, have frequently attracted interest both from a ­biological[1] as well as from a methodological ­perspective[2,3,4]

  • We highlight the broad synergy of XL-MS with high-resolution structural methods, as our XL-MS experiments allowed remodeling of 2,057 residues in total, optimizing the current working model of the E. coli ribosome (Workflow, Fig. 1)

  • We first analyzed the intramolecular cross-links. 126 non-redundant intramolecular cross-links were mapped onto 142 ribosome structures, while only 11% (14/126) of these cross-links could not be mapped to any available structure (Table S2)

Read more

Summary

Introduction

The molecular machines that are responsible for protein synthesis, have frequently attracted interest both from a ­biological[1] as well as from a methodological ­perspective[2,3,4]. The usefulness of FDR calculations and their correlation to true positive protein–protein interactions and the corresponding structural ­models[29] as well as the choice of molecular models that are used for cross-link mapping are in some cases suboptimal This is because (a) current studies have a bias for high-abundant proteins, but methods to address this issue are being ­implemented[30] and (b) few molecular models deposited in structure databases are being evaluated for cross-linking distances, and only one molecular model is selected for distance calculation per protein complex, despite the wealth of structural data. We highlight the broad synergy of XL-MS with high-resolution structural methods, as our XL-MS experiments allowed remodeling of 2,057 residues in total, optimizing the current working model of the E. coli ribosome (Workflow, Fig. 1)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call