Abstract

Owing to the advances in computational techniques and the increase in computational power, atomistic simulations of materials can simulate large systems with higher accuracy. Complex phenomena can be observed in such state-of-the-art atomistic simulations. However, it has become increasingly difficult to understand what is actually happening and mechanisms, for example, in molecular dynamics (MD) simulations. We propose an unsupervised machine learning method to analyze the local structure around a target atom. The proposed method, which uses the two-step locality preserving projections (TS-LPP), can find a low-dimensional space wherein the distributions of datapoints for each atom or groups of atoms can be properly captured. We demonstrate that the method is effective for analyzing the MD simulations of crystalline, liquid, and amorphous states and the melt-quench process from the perspective of local structures. The proposed method is demonstrated on a silicon single-component system, a silicon-germanium binary system, and a copper single-component system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.