Abstract
Structural analysis, magnetocaloric properties, and theoretical investigations of the magnetocaloric effect were carried out in the crystalline La0.7Ba0.15Ag0.15MnO3 manganite prepared using sol-gel route. The phase purity and structure of this sample were checked by X-ray diffraction technique and Rietveld analysis. From magnetic measurements, the ferromagnetic to paramagnetic (FM-PM) phase transition was observed around TC = 255 K. The maximum change in magnetic entropy (\( \Delta {S}_M^{max} \)) and relative cooling power (RCP) extracted from magnetic measurements were 3.48 J × kg-1 × K-1 and 225 J × kg-1 at an applied magnetic field of 5 T. These magnetocaloric parameters offer to the sample the possible use in the magnetic refrigeration technology. The magnetic entropy simulation by using different theories such as the Weiss molecular mean-field theory and the Landau theory shows good correlation between the theoretical values of −∆SM(T) and the experimental ones estimated from Maxwell relation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.