Abstract

In this study, nano-crystalline Ni0.6−xCuxZn0.4Fe2O4 ferrite (0.0⩽x⩽0.5) with grain sizes of 16–38nm have been prepared through a novel method using gelatin. The proper calcination temperature for the precursors which corresponding to the ferrites formation is estimated through thermal analysis measurement. X-ray diffraction patterns confirmed the formation of single phase cubic spinel structure. The grain size was estimated using transmission electron microscopy (TEM) technique. The lattice constant hardly changed with increasing copper concentration while the crystallite size increases. Fourier transform infrared spectra (FT-IR) indicate that the portion of Fe3+ ions at the tetrahedral sites move to the octahedral sites as some of the substituted Cu2+ ions get into the tetrahedral sites. The effect of Cu-substitution on the magnetic properties was studied through the temperature dependence of the molar magnetic susceptibility. The Curie temperatures (TC) were found to decrease with increasing the Cu concentration while molar magnetic susceptibilities remain constant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.