Abstract

Anionic polysaccharides found in nature are functionally and structurally diverse, and so are the polysaccharide lyases (PLs) that catalyze their degradation. Atomic superposition of various PL folds according to their cleavable substrate structure confirms the occurrence of structural convergence at PL active sites. This suggests that various PL folds have emerged to cleave a particular class of anionic polysaccharide during the course of evolution. Whereas the structural and mechanistic similarity of PL active site has been highlighted in earlier studies, a detailed understanding regarding functional properties of this catalytic convergence remains an open question, especially the role of extrinsic factors such as pH in the context of substrate binding and catalysis. Our earlier structural and functional work on pH directed multisubstrate specificity of Smlt1473 inspired us to regroup PLs according to substrate type to analyze the pH dependence of their catalytic activity. Interestingly, we find that particular groups of substrates are cleaved in a particular pH range (acidic/neutral/basic) irrespective of PL fold, boosting the idea of functional convergence as well. On the basis of this observation, we set out to define structurally and computationally the key constituents of an active site among PL families. This study delineates the structural determinants of conserved "substrate-pH activity pairing" within and between PL families.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call