Abstract
A melt structure is an intrinsic factor used to govern a variety of melt macro-properties and plays a fundamental role in understanding crystal growth mechanisms. In this paper, high-temperature Raman spectroscopy and a density functional theory (DFT) method were used to investigate the structure of a K2O-rich KNbO3 (KN) melt which was in equilibrium with a KN crystal. K+ ions and isolated NbO3− groups have been found to be the main structural units in the bulk melt. The NbO3− units connect with each other near the crystal–melt interface to form NbO2Ø2− (Ø = bridging oxygen) chains that further form NbØ6− octahedra (the basic units in the KN crystal structure) on the crystal–melt interface. A boundary layer with the thickness of about 5 μm was observed around the interface. The DFT calculations verified the melt structures and provided accurate assignments for the vibrational bands present in the melt Raman spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.