Abstract

Integrity of the intestinal epithelium is critical for proper functioning of the barrier that regulates absorption of water and restricts uptake of luminal bacteria. It is maintained mainly by tight junctions (TJs) and adherens junctions (AJs). We conducted immunofluorescence (IF) staining for in situ identification of zonula occludin (ZO)-1 proteins for TJ and E-Cadherin proteins for AJ in the small and large intestinal villous and crypt epithelium of nursing pigs infected with porcine epidemic diarrhea virus (PEDV). Twenty 9-day-old piglets [PEDV-infected (n=9) and Mock (n=11)] from PEDV seronegative sows, were orally inoculated [8.9log10 genomic equivalents/pig] with PEDV PC21A strain or mock. At post-inoculation days (PIDs) 1–5, infected pigs showed severe watery diarrhea and/or vomiting and severe atrophic enteritis. By immunohistochemistry, PEDV antigens were evident in enterocytes lining the villous epithelium. At PIDs 1–5, PEDV-infected pigs exhibited mildly to extensively disorganized, irregular distribution and reduced expression of ZO-1 or E-Cadherin in villous, but not crypt epithelial cells of the jejunum and ileum, but not in the large intestine, when compared to the negative controls. The structural destruction and disorganization of TJ and AJ were extensive in PEDV-infected pigs at PIDs 1–3, but then appeared to reversibly recover at PID 5, as evident by increased numbers of ZO-1-positive epithelial cells and markedly improved appearance of E-Cadherin-positive villous epithelium. Our results suggest a possible involvement of structurally impaired TJ and AJ in the pathogenesis of PEDV, potentially leading to secondary bacterial infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call