Abstract

The secondary structure of an ncRNA molecule is known to play an important role in its biological functions. Aligning a known ncRNA to a target candidate to determine the sequence and structural similarity helps in identifying de novo ncRNA molecules that are in the same family of the known ncRNA. However, existing algorithms cannot handle complex pseudoknot structures which are found in nature. In this article, we propose algorithms to handle two types of complex pseudoknots: simple non-standard pseudoknots and recursive pseudoknots. Although our methods are not designed for general pseudoknots, it already covers all known ncRNAs in both Rfam and PseudoBase databases. An evaluation of our algorithms shows that it is useful to identify ncRNA molecules in other species which are in the same family of a known ncRNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call