Abstract

Lepidophagy is comparatively rare amongst teleost fishes, yet our understanding of this specialization is lacking. Therefore we examined the digestive tract features of Pachypterus khavalchor using morphological, osteological, histological and histochemical techniques to comprehend and relate structural organization of digestive tract with scale eating habit. Morphologically, the alimentary canal is defined by a short and muscular esophagus, well-developed stomach and comparatively short intestine. Gut content analysis and intestinal coefficient value (0.53 ± 0.01) revealed that P. khavalchor exhibit both carnivory and lepidophagy. However, P. khavalchor primarily feeds on the scales (67.47%) and other chitin-rich material like aquatic insects (17.62%), aquatic larvae (8.66%) which affirms its solid association with chitinase producing endosymbionts in the gut. Lepidophagy is further supported by the osteological observations. The perfect segregation of the functions such as food capture, ingestion and processing amongst the different types of teeth located in the oral cavity and pharyngeal region thus could be taken as evolutionary adaptations in scale eaters to support lepidophagy. Specialized arrangement of the esophageal and stomach epithelial folds could be altogether taken as an adaptation with the end goal to frame the scale stacks and accordingly facilitate the handling and processing of chitin-rich bolus. The esophageal mucosa is simple squamous epithelium instead of stratified epithelium with numerous goblet cells to withstand the mechanical harm by hard-food stuff like scales. The cardiac and fundic regions exhibited large number tubular gastric glands with simple columnar epithelium. Surface cells of all three stomach regions stained positive for PAS staining. The intestine is without pyloric caeca and is divided into anterior and posterior region. Histologically it is characterized by simple columnar epithelium with brush border and numerous goblet cells throughout its length. Presence of large number microvilli on anterior and posterior intestine was noticeable. Intestinal goblet cells reacted positively to PAS, AB (pH 1) and AB (pH 2.5). Secretions of goblet cells are important for lubricating and protecting the epithelium. The results of present investigation improve the understanding of the digestive physiology of scale eaters in general and P. khavalchor in particular. Overall, our data indicates that though P. khavalchor predominantly feeds on scale, the digestive physiology is adapted to support dual feeding habit (lepidophagy and carnivory).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call