Abstract

The new ternary phases Zr4−xTa1+xGe4 (0.1<x<0.4) and Zr2+xTa3−xGe4 (0.1<x<1.1) were prepared from the elements by arc melting and subsequent induction heating at 1400–1450°C. Single-crystal X-ray diffraction was used to determine their structures and to refine mixed site occupancies. Zr4−xTa1+xGe4 was found to crystallize in the monoclinic space group P21/c (structure type: U2Mo3Si4) and the compound Zr2−xTa3−xGe4 shows orthorhombic symmetry (space group Pnma, structure type: Sm5Ge4). The close structural relationship between the two structures is discussed. Both phases exhibit pronounced differential fractional site occupancy of Ta and Zr on the metal sites and considerable composition ranges. Extended Hückel calculations were performed for various site occupancy models and Mulliken overlap populations for the different lattice sites of each structure were calculated for these models. The correlation of the cumulated Mulliken overlap populations and the atomic orbital populations with the actual site occupancies is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.