Abstract
Strontium-substituted hydroxyapatite (SrHAp) materials are known to actively promote bone formation. However, the optimum level of Sr inclusion needed to elicit a physiologically relevant response from bone cells is unclear and can vary dependent on the fabrication process employed. In this work hydroxyapatite (HAp), SrHAp powders (2, 5 and 10 wt% (i.e., 1, 2 and 5 at%) with respect to [Sr/(Sr + Ca) ∙100]), were synthesized with the purity and Sr-substitution was confined in the range of 1–8 wt% (1–4 at%). All SrHAp samples contained rod-like crystals (<106 nm in length), which decreased in length with increasing Sr content, and exhibited larger flatter crystals (>300 nm in length). TEM-EDX confirmed the presence of Sr and maintenance of the HAp lattice structure for both types of crystals. Qualitative in vitro evaluation using primary human ostesoblast cells (HOBC) cultured in contact with the SrHAp over 28 days showed that the presence of Sr (in particular with the highest Sr content) directly promotes the maturation of osteoblasts into osteocytes as compared to the response observed for HAp. As these materials contain no additives other than Sr, the effects observed here can only be attributed to the physiologically important levels of Sr in the samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.